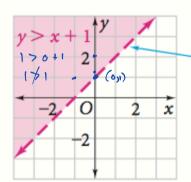
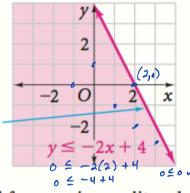
Lesson Objectives:


- Graph linear inequalities
- Write and use linear inequalities when modeling real-world situations

Graphing Linear Inequalities

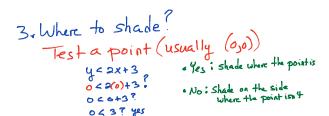

A <u>linear inequality</u> describes a region of the coordinate plane that has a boundary line. The <u>solutions of</u> <u>an inequality</u> are the coordinates of the points that make the inequality true.

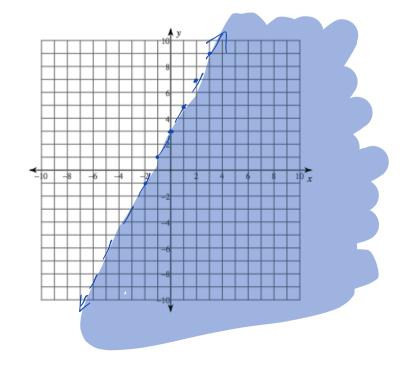
A linear inequality describes a region of the coordinate plane that has a boundary line. The solutions of an inequality are the coordinates of the points that make the inequality true.

Each point on a dashed boundary line is not a solution.

Each point on a solid boundary line is a solution.

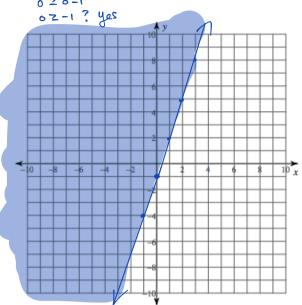
(7,5)


As you can see in the graphs above, you can tell from an inequality whether to shade above or below the boundary line. For an inequality written in the form of $y < \text{or } y \le$, shade below the boundary line. For an inequality written in the form of $y > \text{or } y \ge$, shade above the boundary line.

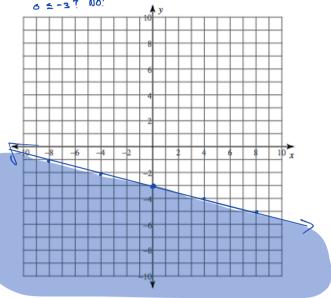

EXAMPLE 1: GRAPHING AN INEQUALITY

1. Graph y < 2x + 3.

1. Use y=2x+3 to find the boundary line. b=3 $m=3/\frac{1}{3}$


2. What Kind of boundary line? Lor > : dashed Lor Z : solid

Graph.
$$b=-($$


2.
$$y \ge 3x - 1$$

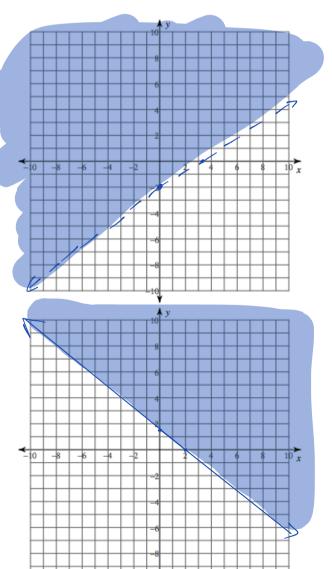
 $0 \ge 3(\omega) - 1$?

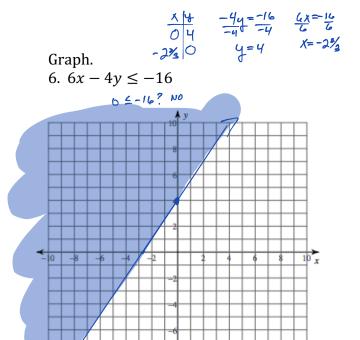
3.
$$y \le -\frac{1}{4}x - 3$$

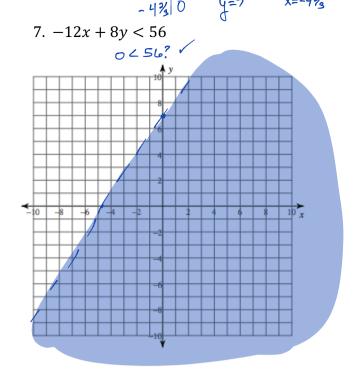
$$0 \le -\frac{1}{4}(0) - 3$$

EXAMPLE 2: REWRITING TO GRAPH AN INEQUALITY

4. Graph
$$3x - 5y < 10$$


5. Graph
$$6x + 8y \ge 12$$


$$\frac{x}{|x|} = \frac{12}{80} = \frac{12}{8} = \frac{6x = 12}{6} = \frac{12}{6}$$


$$\frac{4}{2} = \frac{12}{8} = \frac{12}{8} = \frac{12}{6} = \frac{12}{6}$$

$$\frac{4}{2} = \frac{12}{8} = \frac{12}{8} = \frac{12}{8} = \frac{12}{6} = \frac{12}{6}$$

$$\frac{1}{2} = \frac{12}{8} = \frac{12}{8} = \frac{12}{8} = \frac{12}{6} = \frac{12}$$

2

Modeling Real-World Situations

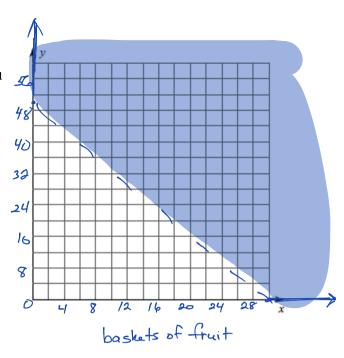
Many situations are modeled by inequalities that have a boundary line of the form Ax + By = C. You can use the intercepts to graph the boundary line of the inequality. Choose a test point not on the boundary line to determine whether the solutions are above or below the boundary line.

EXAMPLE 3: REAL-WORLD PROBLEM SOLVING

8. Suppose your budget for a party allows you to spend no more than \$12 on peanuts and cashews. Peanuts cost \$2 per pound and cashews cost \$4 per pound. Find three possible combinations of peanuts and cashews you can buy.

Let $x = |b_s| \cdot f$ peanuts $2x + 4y \le 12$ 3x = 12 3x = 13 3x = 1

9. Suppose your class is raising money for the Red Cross. You make \$5 on each basket of fruit and \$3 on each box of cheese that you sell. How many items of each type must you sell to raise more than \$150?


Let
$$x = bashets$$
 of fruit

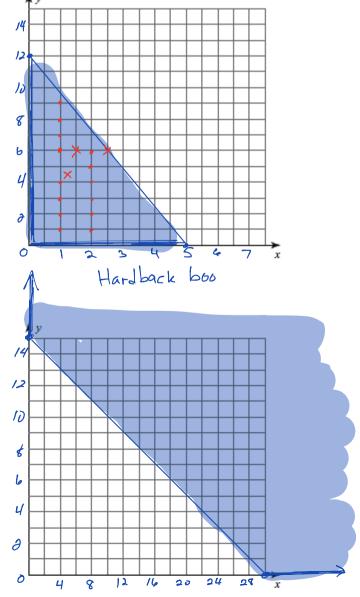
 $y = boxes$ of cheese

 $5x + 3y > 150$
 $5x + 3y > 150$

Cheese

 $x + 3y = 150$
 $y = 50$
 $y = 50$

10. Suppose you intend to spend no more than \$60 buying books. Hardback books cost \$12 and paperbacks cost \$5. How many books of each type can you buy?


Paperback books

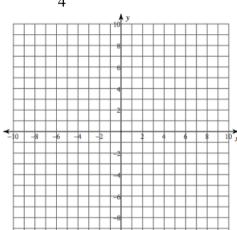
11. Suppose that for your exercise program, you either walk 5 miles/day or ride your bicycle 10 miles/day. How many days will it take you to cover a distance of at least 150 miles?

Lat
$$X = days$$
 walking

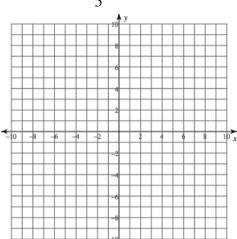
 $y = days$ biking

 $5X + 10y = 2150$
 $X +$

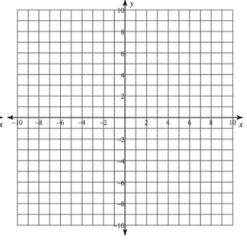
Period _____

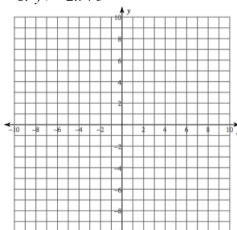

Determine whether point *P* is a solution of the linear inequality.

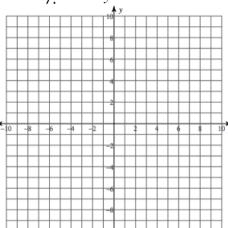
1.
$$y \le -2x + 1$$
; $P(2,2)$

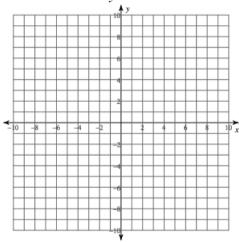

2.
$$y > \frac{5}{3}x - 4$$
; $P(0,1)$

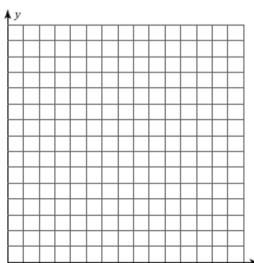
Graph each linear inequality.

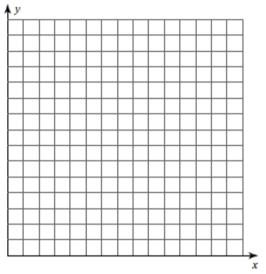

3.
$$y \ge \frac{1}{4}x - 1$$


4.
$$y \le \frac{2}{5}x - 3$$

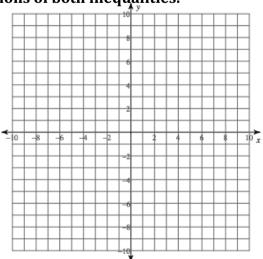

5.
$$2x - 3y \ge 12$$


6.
$$y > -2x + 3$$


7.
$$4x + 5y \ge 10$$


8.
$$4x - 4y < 8$$

- 9. A company makes nylon and canvas backpacks. The profit on a nylon backpack is \$3 and the profit on a canvas backpack is \$10. How many backpacks must the company sell to make a profit of at least \$250?
 - a) Write a linear inequality to model the situation.
 - b) Graph the linear inequality.
 - c) Write three possible solutions to the problem.



- 10. Suppose you work at a local radio station. You are in charge of a \$180 budget for new tapes and CDs. Record companies will give you 21 promotional (free) CDs. You can buy tapes for \$8 and CDs for \$12.
 - a) Write an inequality that shows the number of tapes and CDs you can buy.
 - b) Graph the inequality.
 - c) Is (8,9) a solution of the inequality? Explain what the solution means.
 - d) If you buy only CDs, and you buy as many as possible, how many new recordings will the station get?

11. The points (0, -3) and (8,5) lie on the boundary line of a linear inequality, but neither point is a solution. The point (1,1) is not a solution. Write the inequality that is described by this situation.

- 12. a) Is the point (4,5) a solution to the inequality y > x 1?
 - b) Is the point (4,5) a solution to the inequality y < 3x?
 - c) Find one other point that is a solution of both inequalities.
 - d) Draw a graph that shows all the points that are solutions of both inequalities.

